Ecuația dreptei în plan, deducere și transformări dintr-o formă în alta

Grupuri. Inele si corpuri. Polinoame. Primitive. Integrala definita. Aplicatii ale integralei definite.
intrebator
utilizator
utilizator
Mesaje: 2
Membru din: 19 Oct 2018, 17:54

Ecuația dreptei în plan, deducere și transformări dintr-o formă în alta

Mesaj de intrebator » 12 Ian 2019, 13:00

Bună ziua, am câteva mari dileme cu privire la ecuația dreptei.
1. Cum se deduce ecuația carteziană generală a unei drepte fără a fi nevoie de vectori ?

Altfel spus, nu înțeleg de ce pentru deducerea ecuației CARTEZIENE GENERALE, deci nu cea vectorială, a dreptei avem nevoie de vectori suport și calcul vectorial ? Și de ce prima dată pe vremuri în liceu se preda ecuația vectorială a dreptei iar acum nici nu se mai predă ci se predă doar cea carteziană și fără deducere? Eu vreau să aflu care formă a ecuației dreptei pe care o implică, adică care a fost prima, cea carteziană sau cea vectorială ? Dar din câte știu nu are treabă neaparat calculul vectorial și vectorii cu geometria analitică, adică ei sunt doar un instrument de calcul, nu o noțiune fundamentală a geometriei analitice, aceasta din urmă ocupându-se cu studiul figurilor prin metoda coordonatelor.
2. Cum se transformă de la o formă a ecuației la altă formă ?
Adică dacă am ecuația dreptei sub formă carteziană generală, cum ajung la cea parametrică și la cea dată prin tăieturi, și eventual la cea vectorială ?

3. Ecuația canonică a dreptei este tot una cu ecuația carteziană ?

Mulțumesc și vă rog corectați-mă la tot ceea ce am scris eronat sau prostii.

Integrator
guru
guru
Mesaje: 1554
Membru din: 16 Ian 2011, 08:32

Re: Ecuația dreptei în plan, deducere și transformări dintr-o formă în alta

Mesaj de Integrator » 13 Ian 2019, 09:30

intrebator scrie:
12 Ian 2019, 13:00
Bună ziua, am câteva mari dileme cu privire la ecuația dreptei.
1. Cum se deduce ecuația carteziană generală a unei drepte fără a fi nevoie de vectori ?

Altfel spus, nu înțeleg de ce pentru deducerea ecuației CARTEZIENE GENERALE, deci nu cea vectorială, a dreptei avem nevoie de vectori suport și calcul vectorial ? Și de ce prima dată pe vremuri în liceu se preda ecuația vectorială a dreptei iar acum nici nu se mai predă ci se predă doar cea carteziană și fără deducere? Eu vreau să aflu care formă a ecuației dreptei pe care o implică, adică care a fost prima, cea carteziană sau cea vectorială ? Dar din câte știu nu are treabă neaparat calculul vectorial și vectorii cu geometria analitică, adică ei sunt doar un instrument de calcul, nu o noțiune fundamentală a geometriei analitice, aceasta din urmă ocupându-se cu studiul figurilor prin metoda coordonatelor.
2. Cum se transformă de la o formă a ecuației la altă formă ?
Adică dacă am ecuația dreptei sub formă carteziană generală, cum ajung la cea parametrică și la cea dată prin tăieturi, și eventual la cea vectorială ?

3. Ecuația canonică a dreptei este tot una cu ecuația carteziană ?

Mulțumesc și vă rog corectați-mă la tot ceea ce am scris eronat sau prostii.
Bună dimineata,

Citiți https://www.google.ro/url?sa=t&source=w ... _JEz-MLc3S și spuneți ce nu întelegeți....

Toate cele bune,

Integrator

Scrie răspuns
  • Subiecte similare
    Răspunsuri
    Vizualizări
    Ultimul mesaj