Primitive

Grupuri. Inele si corpuri. Polinoame. Primitive. Integrala definita. Aplicatii ale integralei definite.
DragosP
utilizator
utilizator
Mesaje: 12
Membru din: 08 Oct 2018, 22:57

Primitive

Mesaj de DragosP » 08 Oct 2018, 23:08

Buna seara!Am mare nevoie de ajutor in legatura cu 2 exercitii:
1)Sa se arate ca nu exista functii f:R_R* care sa admita primitive astfel incat pentru o primitiva F a lui f pe R sa avem: F(1-x)*F(x)=F(x^2), oricare x apartine R.
2)[Se dau functiile f,g:(-a,a)->R,

Sa se arate ca h=f-g admite primitive pe (-a,a) si sa se gaseasca o primitiva a sa.

ghioknt
profesor
profesor
Mesaje: 1479
Membru din: 09 Apr 2013, 14:56
Localitate: Bucuresti

Re: Primitive

Mesaj de ghioknt » 10 Oct 2018, 20:19

DragosP scrie:
08 Oct 2018, 23:08
Buna seara!Am mare nevoie de ajutor in legatura cu 2 exercitii:
1)Sa se arate ca nu exista functii f:R_R* care sa admita primitive astfel incat pentru o primitiva F a lui f pe R sa avem: F(1-x)*F(x)=F(x^2), oricare x apartine R.
Dacă f admite primitive, ea va avea proprietatea lui Darboux și, în consecință, f(R) este un interval din R*, deci valorile ei ori sunt toate pozitive, ori sunt toate negative. În ambele situații F trebuie să fie strict monotonă pe R.
Pentru x=0: F(1)F(0)=F(0) și avem de analizat două posibilități.
a). Dacă F(0)=0, atunci pentru x=1: 0F(1)=F(1), deci F(1)=0.
b). Dacă F(0) este nenul, atunci, prin simplificarea cu F(0), relația scrisă ne dă F(1)=1. Acum, pentru x=1, se obține F(0)=1.
În ambele situații se contrazice stricta monotonie a lui F.

ghioknt
profesor
profesor
Mesaje: 1479
Membru din: 09 Apr 2013, 14:56
Localitate: Bucuresti

Re: Primitive

Mesaj de ghioknt » 10 Oct 2018, 20:44

DragosP scrie:
08 Oct 2018, 23:08
Buna seara!Am mare nevoie de ajutor in legatura cu 2 exercitii:
2)[Se dau functiile f,g:(-a,a)->R,

Sa se arate ca h=f-g admite primitive pe (-a,a) si sa se gaseasca o primitiva a sa.
Funcția h admite primitive pe intervalul (-a; a) pentru că f și g, deci și h, sunt continue pe acest interval.
Surpriza cea mare o vei avea dacă vei calcula derivatele celor două funcții.


Așadar, h'(x)=0, deci h este funcție constantă pe (-a; a). Cum h(0)=pi/4,avem h(x)=pi/4 pentru orice x.
Ultima oară modificat 10 Oct 2018, 22:07 de către ghioknt, modificat 1 dată în total.

Scrie răspuns
  • Subiecte similare
    Răspunsuri
    Vizualizări
    Ultimul mesaj