fractii

Aritmetica. Puteri. Numere in sistem zecimal. Divizibilitate. Multimi. Numere rationale (fractii, numere zecimale). Rapoarte si procente.
catalina17
junior
junior
Mesaje: 175
Membru din: 23 Feb 2011, 11:25
Localitate: brasov

fractii

Mesaj de catalina17 » 01 Feb 2012, 17:54

Determinati nr perechilor de fractii (a/b; c/d) astfel incat a*d = b*c = 6,

a,b,c,d, apartin N stelat.

Multumesc!

Bogdan Stanoiu
veteran
veteran
Mesaje: 1547
Membru din: 17 Oct 2010, 21:24
Localitate: Bucuresti

Re: fractii

Mesaj de Bogdan Stanoiu » 04 Feb 2012, 22:16

catalina17 scrie:Determinati nr perechilor de fractii (a/b; c/d) astfel incat a*d = b*c = 6,

a,b,c,d, apartin N stelat.

Multumesc!
a;b;c si d trebuie sa fie divizori naturali ai lui 6
Pentru a si b divizori naturali ai lui 6 avem c=6/b si d=6/a
Deci a si b pot lua la liber valorile 1;2;3;6 iar pentru a si b date c si d sunt determinate in mod unic
Deci numarul de perechi de fractii este egal cu numarul de cvadruple de forma(a;b;6/b;6/a) cu a si b divizori ai lui 6 adica numarul cautat este egal cu 4^2=16
Mai general, daca m este un numar natural nenul atunci numarul de perechi de fractii de numere naturale (a/b;c/d) pentru care a*d=c*b=m este egal cu patratul numarului divizorilor naturali ai lui m

Scrie răspuns