determinanti matrice

Matrice. Permutari. Determinanti. Sisteme de ecuatii. Siruri convergente. Limite de functii. Continuitate. Derivabilitate. Reprezentarea grafica a functiilor.
PTudorG
utilizator
utilizator
Mesaje: 5
Membru din: 08 Mar 2018, 23:31

determinanti matrice

Mesaj de PTudorG » 26 Noi 2018, 22:59

Fie matricea A=(aij) de dimensiune nxn astfel incat
aij={1, daca i>=j
{i+j, daca i<j
Mi se cere sa calculez det(A). Am incercat sa calculez sumele de pe linii/coloane si sa aplic niste proprietati dar nimic util pana acum. Multumesc anticipat pentru orice sfat.

Menim
utilizator
utilizator
Mesaje: 3
Membru din: 28 Noi 2018, 22:39

Re: determinanti matrice

Mesaj de Menim » 30 Noi 2018, 15:07

Determinantul tau are urmatoarea forma:
1 1 1......................... 1
2+1 1 1..........................1
3+1 3+2 1..........................1
4+1 4+2 4+3 .....................1
.
.
n-1+1 n-1+2 n-1+3....................1
n+1 n+2 n+3............n+n-1 1

Inmultim linia n-1 cu -1 si o adunam peste linia n. Apoi inmultim linia n-2 cu -1 si o adunam peste n-1. Facem aceasta operatie pana ajungem la linia 1, pe care o inmmultim cu -1 si o adunam peste linia 2. Obtinem urmatorul determinant:

1 1 1....................................1
1+1 0 0....................................0
1 2+2 0....................................0
1 1 3+3 ..............................0
.
.
1 1 1..........(n-1)+(n-1) 0 0
1 1 1...........................n+n 0

Linia k va avea urmatoarea forma:elementul k va avea valoare k-1 va avea valoarea 2(k-1), elementele de la stanga acestuia vor avea valoarea 1, iar celelalte valoarea 1. Linia 1 va avea toate elementele de valoare 1.

Inmultim ultima coloana cu -1 si o adunam peste toate celelalte coloane. Obtinem:
0 0 0....................................1
1+1 0 0....................................0
1 2+2 0....................................0
1 1 3+3 ..............................0
.
.
1 1 1..........(n-1)+(n-1) 0 0
1 1 1...........................n+n 0

Mai departe nu am reusit sa ajung.
Edit:Determinantii erau mai bine formatati dar se pare ca editorul acesta nu accepta mai multe spatii consecutive.

PTudorG
utilizator
utilizator
Mesaje: 5
Membru din: 08 Mar 2018, 23:31

Re: determinanti matrice

Mesaj de PTudorG » 02 Dec 2018, 14:38

Multumesc, am aflat cum se facea, se scria matricea(era 1 pe diagonala principala si sub aceasta, iar deasupra era i+j) si apoi din fiecare coloana se scadea coloana urmatoare, si se obtinea 0 sub diagonala principala, iar determinantul era produsul elementelor de pe diagonala principala.

Scrie răspuns
  • Subiecte similare
    Răspunsuri
    Vizualizări
    Ultimul mesaj