x,y numere reale
Daca (x+sqrt(y^2+1))(y+sqrt(x^2+1))=1, atunci x+y=0.
Si o problema de geometrie: Se da triunghiul isoscel ABC, baza BC.Unghiul din A are 20 grade, BC are lungimea de a.Pe latura AB se ia punctul M astfel incat AM=a.Se cere masura unghiului BMC.(baza BC are lungimea mai mica decat AC)
1 problema de algebra si una de geometrie
-
- veteran
- Mesaje: 1050
- Membru din: 24 Iul 2013, 17:40
Re: 1 problema de algebra si una de geometrie
În interiorul unghiului ABC consider punctul D a. î.grapefruit scrie: ↑12 Mai 2020, 23:44x,y numere reale
Daca (x+sqrt(y^2+1))(y+sqrt(x^2+1))=1, atunci x+y=0.
Si o problema de geometrie: Se da triunghiul isoscel ABC, baza BC.Unghiul din A are 20 grade, BC are lungimea de a.Pe latura AB se ia punctul M astfel incat AM=a.Se cere masura unghiului BMC.(baza BC are lungimea mai mica decat AC)
Consecințe:
Apoi
pentru că triunghiurile AMC și BCD sunt congruente (LUL).
-
- veteran
- Mesaje: 1050
- Membru din: 24 Iul 2013, 17:40
Re: 1 problema de algebra si una de geometrie
Am inteles rezolvarea, singura nelamurire este ca D nu iese in interiorul triunghiului.
Ce parere aveti de urmatoarea abordare, se construieste triunghiul echilateral de latura AC si formam triunghiul ACN echilateral, apoi se demonstreaza ca triunghiul AMN este congruent cu triunghiul ABC.
Ce parere aveti de urmatoarea abordare, se construieste triunghiul echilateral de latura AC si formam triunghiul ACN echilateral, apoi se demonstreaza ca triunghiul AMN este congruent cu triunghiul ABC.
Re: 1 problema de algebra si una de geometrie
Cele două construcții sunt în oglindă. Eu am păstrat triunghiul ABC și am construit peste el triunghiul BCD congruent cu triunghiul AMC, tu ai păstrat triunghiul AMC și ai construit peste el triunghiul NAM congruent cu triunghiul ABC. Ambele construcții pun în evidență câte un unghi de 70 grade adiacent unuia de 80 grade. Nici punctul N nu este în interiorul triunghiului ABC, de unde vine obligația pentru D de a fi în interiorul acestui triunghi?
-
- veteran
- Mesaje: 1050
- Membru din: 24 Iul 2013, 17:40
Re: 1 problema de algebra si una de geometrie
În interiorul unghiului ABC consider punctul D(asa am interpretat eu aceasta propozitie) - am citit in interiorul triunghiului ABC.
-
- Subiecte similare
- Răspunsuri
- Vizualizări
- Ultimul mesaj
-
- 1 Răspunsuri
- 1077 Vizualizări
-
Ultimul mesaj de Felixx
18 Aug 2020, 15:53
-
- 1 Răspunsuri
- 5387 Vizualizări
-
Ultimul mesaj de Felixx
08 Iun 2019, 10:07
-
- 1 Răspunsuri
- 2670 Vizualizări
-
Ultimul mesaj de Utilizator_XD
30 Apr 2019, 16:57
-
- 5 Răspunsuri
- 3737 Vizualizări
-
Ultimul mesaj de Felixx
13 Iul 2019, 19:31
-
- 5 Răspunsuri
- 782 Vizualizări
-
Ultimul mesaj de ghioknt
28 Iul 2020, 21:37