Matrice in modulo 5

Grupuri. Inele si corpuri. Polinoame. Primitive. Integrala definita. Aplicatii ale integralei definite.
incroyable
utilizator
utilizator
Mesaje: 33
Membru din: 06 Oct 2015, 19:13

Matrice in modulo 5

Mesaj de incroyable » 16 Dec 2018, 12:47

Pentru fiecare se considera matricea
Sa se demonstreze ca

ghioknt
profesor
profesor
Mesaje: 1617
Membru din: 09 Apr 2013, 14:56
Localitate: Bucuresti

Re: Matrice in modulo 5

Mesaj de ghioknt » 16 Dec 2018, 20:33

În definitiv sunt numai 5 matrici pentru care poți costata prin calcul că fiecare dintre ele verifică relația cu pricina.
Dacă vrei să fii mai sofisticat, să faci o demonstrație care să fie valabilă pentru orice corp
poți constata că relația Cayley pentru A(a) este care se transformă în relația de recurență .
La fel ca în cazul matricelor cu elemente în corpul , pentru că ecuația caracteristică
are rădăcinile , deducem că
există două matrici B și C a. î. pentru orice n natural.
Avem atunci pentru că în corpul cu 5 elemente
avem pentru orice x.

incroyable
utilizator
utilizator
Mesaje: 33
Membru din: 06 Oct 2015, 19:13

Re: Matrice in modulo 5

Mesaj de incroyable » 16 Dec 2018, 22:03

Ati putea va rog sa imi explicati de ce cele doua radacini atesta, mai exact, afirmatia cautata? In plus, matricele B si C trebuie sa aiba o forma anume?
Practic nu am mai inteles rezolvarea din momentul introducerii celor doua matrici si pana la final. am inteles si este clar, insa restul nu.

ghioknt
profesor
profesor
Mesaje: 1617
Membru din: 09 Apr 2013, 14:56
Localitate: Bucuresti

Re: Matrice in modulo 5

Mesaj de ghioknt » 16 Dec 2018, 23:28

Sper că ai înțeles că cele notate de mine cu sunt rădăcinile ecuației caracteristice, deci că au loc:

Consider propozițiile și determin B și C a. î. P(0) și P(1)
să fie adevărate, adică: . Rezolv acest sistem prin metoda reducerii, de exemplu și obțin

E important că B și C există și mai puțin important cum arată ele în final. Să demonstrăm acum P(n) prin inducție.
Să presupunem că P(n-1) și P(n) sunt adevărate și să folosim relația de recurență.

Deci P(n+1) este adevărată dacă P(n-1) și P(n) sunt adevărate; dar P(0) și P(1) sunt adevărate pentru că așa au fost determinate B și C. Conform principiului inducției, propozițiile P(n) sunt adevărate pentru orice n natural, iar punctul de pornire a demonstrației a fost tocmai existența în a celor 2 rădăcini ale ecuației caracteristice. Eu am presupus că tehnica asta este cunoscută multor elevi, de la matricile cu elemente într-un corp numeric.

incroyable
utilizator
utilizator
Mesaje: 33
Membru din: 06 Oct 2015, 19:13

Re: Matrice in modulo 5

Mesaj de incroyable » 17 Dec 2018, 15:04

Am inteles intocmai acum, probabil o sa ni se predea la scoala, momentan nu am facut, eu am vrut sa lucrez inainte si sa fac mai multe exercitii.
Important este ca am inteles modul de lucru si va multumesc frumos pentru timpul acordat.

Scrie răspuns
  • Subiecte similare
    Răspunsuri
    Vizualizări
    Ultimul mesaj