Pagina 1 din 1

Aproximare

Scris: 02 Ian 2017, 18:12
de cristinat
Cum se aproximeaza radical de ordin 3 din 8,7 fara formula lui Taylor?

Scris: 03 Ian 2017, 13:41
de DD
2<∛8.7<∛9.261=2.1
2.01<∛8.7<2.09
2.02<∛8.7<2.08
2.03<∛8.7<2.07
2.04<∛8.7<2.06
2.05<∛8.7
2.051<∛8.7<2.059
........................................
2.056<∛8.7<2.057
Si asa mai departe ,pana la ce.
Zecimala doresti

Scris: 03 Ian 2017, 13:45
de cristinat
DD scrie:2<∛8.7<∛9.261=2.1
2.01<∛8.7<2.09
2.02<∛8.7<2.08
2.03<∛8.7<2.07
2.04<∛8.7<2.06
2.05<∛8.7
2.051<∛8.7<2.059
........................................
2.056<∛8.7<2.057
Si asa mai departe ,pana la ce.
Zecimala doresti
multumesc! si daca vreau ln5 cum se procedeaza?

Scris: 04 Ian 2017, 15:39
de DD
e~2.718283
1/(2^9)=0.000015256878906e^(1/2^9)=1.0019551
1/(2^8)=0.00390625e^(1/2^8)=1.003914
1/(2^7)=0.0078125..e^(1/2^7)=1.007843
1/(2^6)=0.15625..e^(1/2^6)=1.015748
1/(2^5)=0.03125..e^(1/2^5)=1.031744

1/(2^4)=0.0625/e^(1/2^4)=..1.0645
1/(2^3)=0.125../e^(1/2^3)=.1.1332
1/(2^2)=0.25.e^(1/2^2)=1.28403
&#189;=0.5.e^ (1/2)= 1.648722
e^(25/16)=e^16/16*e^8/16*e^1/16=2.718283*1.648722*1.0645=4.771=e^400/256 .e^416/256=e^13/8=e(8/8)*e^4/8*e^1/8=2.718283.*1.648722*1.1332=5.0787 Deci
..
ln4.771lne^25/16=25/16=1.5625<ln5<ln5.0787=lne^26/16=26/16=1.625
.
e^404/256=e^101/64=e^64/64*e^32/64*e^(4+1)/64=2.718283.*1.648722*1.0645*1.015748=
4.8446
e^412/256=e^103/64=e*e^1/2*e^1/16*e^1/32*e^1/64=2.718283*1.648722*1.0645*1.031744*
1.015748==4.9992

Lne^404/256=ln4.8446=404/256=1.578<ln5>lne^412/256=ln4.9992
.
e^412/256=e^105472/65536=4.9992
e^105476/65536=e^26369/16384=e*e^1/2*e^1792/16384*e^1/16384=2.718283*1.648722*
1.0645*1.031744*1.015748*1.003914=5.01

Lne^412/256=ln4.9992=1.6094<ln5<lne^26369/16384=ln5.01=1.60943
Cred ca ajunge Daca nu ai inteles ceva intreaba

Scris: 04 Ian 2017, 16:54
de cristinat
DD scrie:e~2.718283
1/(2^9)=0.000015256878906e^(1/2^9)=1.0019551
1/(2^8)=0.00390625e^(1/2^8)=1.003914
1/(2^7)=0.0078125..e^(1/2^7)=1.007843
1/(2^6)=0.15625..e^(1/2^6)=1.015748
1/(2^5)=0.03125..e^(1/2^5)=1.031744

1/(2^4)=0.0625/e^(1/2^4)=..1.0645
1/(2^3)=0.125../e^(1/2^3)=.1.1332
1/(2^2)=0.25.e^(1/2^2)=1.28403
&#189;=0.5.e^ (1/2)= 1.648722
e^(25/16)=e^16/16*e^8/16*e^1/16=2.718283*1.648722*1.0645=4.771=e^400/256 .e^416/256=e^13/8=e(8/8)*e^4/8*e^1/8=2.718283.*1.648722*1.1332=5.0787 Deci
..
ln4.771lne^25/16=25/16=1.5625<ln5<ln5.0787=lne^26/16=26/16=1.625
.
e^404/256=e^101/64=e^64/64*e^32/64*e^(4+1)/64=2.718283.*1.648722*1.0645*1.015748=
4.8446
e^412/256=e^103/64=e*e^1/2*e^1/16*e^1/32*e^1/64=2.718283*1.648722*1.0645*1.031744*
1.015748==4.9992

Lne^404/256=ln4.8446=404/256=1.578<ln5>lne^412/256=ln4.9992
.
e^412/256=e^105472/65536=4.9992
e^105476/65536=e^26369/16384=e*e^1/2*e^1792/16384*e^1/16384=2.718283*1.648722*
1.0645*1.031744*1.015748*1.003914=5.01

Lne^412/256=ln4.9992=1.6094<ln5<lne^26369/16384=ln5.01=1.60943
Cred ca ajunge Daca nu ai inteles ceva intreaba
nu cred ca v-am cerut asa ceva!